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SHORT COMMUNICATION

On series solution for generalized Falkner–Skan flow
of a FENE-P model
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SUMMARY

This paper deals with the viscoelastic boundary layer flow past a plate. Constitutive assumptions of the
FENE-P model are taken into account. The pressure gradient is taken as non-zero. The series solution of
the non-linear problem modelled in (Appl. Math. Lett. 2007; 20:1211–1215) is developed by a homotopy
analysis method (HAM). Numerical solution of the skin friction coefficient is also computed. Further a
comparison between the numerical and HAM solutions is provided. Copyright q 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Investigation of boundary layer flows is the subject of great interest because of their engineering
and industrial applications. In the past the boundary layer theory has been widely used to various
flow equations of non-Newtonian fluid models. Among the many fluid models, an interesting one
is the FENE-P model. Several investigations using FENE-P model are made by many investigators
including Agarwala and O’Regan [1], Olagunju [2], Asaithambi [3] and several references therein.
Very recently, Anabtawi and Khuri [4] found numerical solutions for generalized Falkner–Skan

∗Correspondence to: S. Abbasbandy, Department of Mathematics, Science and Research Branch, Islamic Azad
University, Tehran 14778, Iran.

†E-mail: abbasbandy@yahoo.com
‡Permanent address: Department of Mathematics, Imam Khomeini International University, Ghazvin 34149-16818,
Iran.

Contract/grant sponsor: Higher Education Commission (HEC) of Pakistan

Copyright q 2008 John Wiley & Sons, Ltd.



GENERALIZED FALKNER–SKAN FLOW 699

flow of a FENE-P fluid. Alizadeh et al. [5] also found the solution of the Falkner–Skan equation
for wedge by utilizing Adomian decomposition method.

The purpose of present attempt is two fold. First to find a series solution of the non-linear
problem given in study [4] by using homotopy analysis method (HAM) [6–16]. The numerical
solution for the skin friction is also tabulated. A comparison between the solutions obtained is
presented.

2. PROBLEM STATEMENT

The generalized Falkner–Skan flows problem in a FENE-P fluid is [2, 4]

(H f ′′)′+ f f ′′+ 2m

m+1
(1−( f ′)2)=0 (1)

f (0)= f�, f ′(0)=0, f ′(∞)=1 (2)

where f = f (�) satisfies

�g3(�)( f ′′)2+g(�)−�=0

Here � is the dimensionless variable and f� is a constant that corresponds to blowing/injection
or suction. In addition, �=b/(3+b), where b is the extensibility parameter, and

�= (m+1)�

3+b

where �=We2Re. The constant We is the well-known Weissenberg number, which is the measure
of the fluid elasticity and Re is the Reynolds number, see [4] for more details.

As [4], in this study we consider the case where ��1. In addition, the variable H in Equation (1)
is given by

H =1−�+�g

where � is the retardation parameter. By these assumptions, in [4], it is proved that H �=0 is
constant and we have the following generalized Falkner–Skan equation:

H f ′′′+ f f ′′+ 2m

m+1
(1−( f ′)2)=0 (3)

Now, by introducing the transformations

f (�)=√
HF(�), �= �√

H
(4)

we have the following problem:

F ′′′(�)+F(�)F ′′(�)+�(1−(F ′(�))2)=0 (5)

F(0)= f�√
H

, F ′(0)=0, F ′(∞)=1 (6)

where �=2m/(m+1).
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3. CROCCO’S TRANSFORMATION

A direct solution of Equation (5) with boundary conditions (6) can be obtained by a shooting
method using Runge–Kutta algorithm or other iterative numerical methods, see, for example,
[17–20]. The arising difficulty is that we have to make an initial guess for the value F ′′(0) to initiate
the shooting process and this guess is very important to obtain a good solution. Unfortunately, the
process is very sensitive to this starting value and the problem is made worse by the values of �
and F(0) in the problem.

Crocco’s transformation can be used in calculating F ′′(0). The idea is to transform the equation
and boundary conditions into another set of variables. Choose a suitable profile for the unknown
function and then integrate over the complete range of the independent variable [21]. We first
introduce the transformations

	=F ′(�), 
=(F ′′(�))2 (7)

which convert Equation (5) into the following second-order differential equation:



d2


d	2
− 1

2

(
d


d	

)2

+�(	2−1)
d


d	
−(4�−2)	
=0 (8)

The boundary conditions (6) together with the fact that F ′′(+∞)=0 give the following conditions
for Equation (8):

	=0,
d


d	
=−2(aM+�) (9)

	=1,
d


d	
=0 (10)

where a=F(0)= f�/
√
H and M=F ′′(0). Further, from Equations (8)–(10) we obtain the so-

called supplementary boundary conditions:

	=1; 
=0 (11)

	=0; 
=M2 (12)

To solve Equation (8) subject to the conditions (9)–(12), we choose the following profile for 
:


(	)=(aM+�)(−2	3+4	2−2	)+M2(2	3−3	2+1) (13)

which satisfies (9)–(12). Substituting Equation (13) into Equation (8) and integrating with respect
to 	 from 	=0 to 	=1, we obtain a four-order polynomial for M . We take the algebraically
larger root as the other root does not give realistic results. Hence, in this method, calculating M
for various values of � and F(0) is very easy and indeed we can find that the problem for which
values of these parameters are realistic.
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4. SOLUTION BY HOMOTOPY ANALYSIS METHOD (HAM)

According to Equation (5) and the boundary conditions (6), solution can be expressed in the form

F(�)=
+∞∑
q,n=0

cq,n�
qe−n�� (14)

where the cq,n(q,n=0,1, . . .) are coefficients to be determined and �>0 is a spatial-scale param-
eter. According to the rule of solution expression denoted by Equation (14) and the boundary
conditions (6), it is natural to choose

F0(�)=a+�− 1−exp(−��)

�
(15)

as the initial approximation to F(�), where a=F(0)= f�/
√
H . We define an auxiliary linear

operator L by

L[�(�,�; p)]=
(

�3

��3
+�

�2

��2

)
�(�,�; p) (16)

with the property

L[C1+C2�+C3e
−��]=0 (17)

where C1,C2 and C3 are constants. This choice of L is motivated by Equation (14) and the later
requirement that (25) should contain only two non-zero constants, namely C1 and C3.

From (5) we define a non-linear operator

N[�(�,�; p)]=
(

�3�

��3

)
+�

(
�2�

��2

)
+�

[
1−

(
��

��

)2
]

(18)

and then construct the homotopy

H[�(�,�; p)]=(1− p)L[�(�,�; p)−F0(�)]− h̄ pN[�(�,�; p)] (19)

where h̄ �=0 is the convergence-control parameter [16]. Setting H[�(�,�; p)]=0, we have the
zero-order deformation problem as follows:

(1− p)L[�(�,�; p)−F0(�)]= h̄ pN[�(�,�; p)] (20)

�(0,�; p)=a,
��(�,�; p)

��

∣∣∣∣
�=0

=0,
��(�,�; p)

��

∣∣∣∣
�=+∞

=1 (21)

where p∈[0,1] is an embedding parameter. When the parameter p increases from 0 to 1, the
solution �(�,�; p) varies from F0(�) to F(�). If this continuous variation is smooth enough, the
Maclaurin’s series with respect to p can be constructed for �(�,�; p), and further, if this series is
convergent at p=1, we have

F(�)=F0(�)+
+∞∑
n=1

Fn(�)=
+∞∑
n=0

n(�, h̄,�) (22)
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where

Fn(�)= 1

n!
�n�(�,�; p)

�pn

∣∣∣∣
p=0

Differentiating Equations (20) and (21) n times with respect to p, then setting p=0, and finally
dividing by n!, we obtain the nth-order deformation problem

L[Fn(�)−�n Fn−1(�)]= h̄ Rn(�) (n=1,2,3, . . .) (23)

Fn(0)=0, F ′
n(0)=0, F ′

n(+∞)=0 (24)

where Rn is defined as

Rn(�)=F ′′′
n−1+

n−1∑
i=0

Fi F
′′
n−i−1−�

n−1∑
i=0

F ′
i F

′
n−i−1+�(1−�n)

with

�n =
{
0, n�1

1, n>1

The general solution of Equation (23) is

Fn(�)= F̂n(�)+C1+C2�+C3e
−�� (25)

where C1,C2 and C3 are constants and F̂n(�) is a particular solution of Equation (23).
Using F ′

n(+∞)=0, we have C2=0. The unknowns C1 and C3 are governed by

F̂n(0)+C1+C3=0, F̂ ′
n(0)−�C3=0

In this way, we derive Fn(�) for n=1,2,3, . . . , successively. At the N th-order approximation, we
have the analytic solution of Equation (5), namely

F(�)≈
N∑

n=0
Fn(�) (26)

The auxiliary parameter h̄ can be employed to adjust the convergence region of the series (26)
in the HAM. By means of the so-called h̄-curve, it is straightforward to choose an appropriate
range for h̄, which ensures the convergence of the solution series. As pointed out by Liao [6], the
appropriate region for h̄ is a horizontal line segment.

5. NUMERICAL RESULTS

We use the widely applied symbolic computation software MATHEMATICA to solve
Equations (23) and find that n(�, h̄,�) has the following structure:

n(�, h̄,�)=
n+1∑
k=0

�n,k(�, h̄,�)exp(−k��), n�0
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where the function �n,k(�, h̄,�) is defined by

�0,0(�, h̄,�)=b00,0+b10,0�

�0,1(�, h̄,�)=b00,1

�n,0(�, h̄,�)=b0n,0, n�1

�n,k(�, h̄,�)=
2(n+1−k)∑

i=0
bin,k�

i , n�1, 1�k�n+1

and the related coefficients are

b00,0=a− 1

�
, b10,0=1, b00,1= 1

�

b01,0= h̄

[−5

4�3
− 7�

4�3
− a

�2
+ 1

�

]

b01,1= h̄

[
3

2�3
+ 3�

2�3
+ a

�2
− 1

�

]

b11,1= h̄

[
−1+ a

�
+ 1

�2
+ 2�

�2

]

b21,1= h̄

2�

b01,2= h̄

[−1

4�3
+ �

4�3

]

and so on. Note that the infinite series (22) gives a family of explicit analytic solutions in two
parameters � (�>0) and h̄ (h̄ �=0). Note that the HAM provides us with great freedom and large
flexibility to select better values of � and h̄ so as to ensure that the related series (22) converges
to F(�). Certainly, if Equation (22) converges, its second-order derivative with respect to � at
�=0, say,

+∞∑
k=0

′′
k (0, h̄,�)= lim

n→+∞�n

(
=

n∑
k=0

′′
k (0, h̄,�)

)
(27)

must converge, too. We can see

�1=a+(�−a)(1+ h̄)− h̄

2�
− 3 h̄ �

2�

�2=a+(�−a)(1+ h̄)2− 5 h̄2

6�3
− 3 h̄2 �

�3
− 8 h̄2 �2

3�3
− a h̄2

2�2
− 3a h̄2 �

2�2
− h̄

�
− 3 h̄ �

�
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�3 = a+(�−a)(1+ h̄)3− 275 h̄3

72�5
− 2303 h̄3 �

144�5
− 1549 h̄3 �2

72�5
− 1417 h̄3 �3

144�5

−5a h̄3

2�4
− 9a h̄3 �

�4
− 8a h̄3 �2

�4
− 5 h̄2

2�3
+ 5 h̄3

6�3
− 9 h̄2 �

�3
+ 3 h̄3 �

�3
− 8 h̄2 �2

�3

−a2 h̄3

2�3
− 3a2 h̄3 �

2�3
− 3a h̄2

2�2
− 9a h̄2 �

2�2
+ 8 h̄3 �2

3�3
− 3 h̄

2�
− 9 h̄ �

2�

Note that �n contains the term (�−a)(1+ h̄)n . Thus, h̄ must belong to a subset of the region
|1+ h̄|�1. Note that in Equations (20) and (21) we have defined h̄ �=0. Our calculations indicate
that the series (27) converges if

−2<h̄<0, ��2 (28)

By means of the so-called h̄-curve, it is straightforward to choose an appropriate range for h̄,
which ensures the convergence of the solution series. As pointed out by Liao [6], the appropriate
region for h̄ is a horizontal line segment. Our solution series contain the auxiliary parameter h̄.
We can choose an appropriate value of h̄ to ensure that the solution series converges. We can
investigate the influence of h̄ on the convergence of F ′′(0), by plotting the curve of it versus h̄, as
shown in Figure 1 for some examples by �=3.

Figure 2 shows the residual error of Equation (5) for �=0 and �=3. It can be found that the
best value for h̄ in Figure 2(left) is −0.475 (first row of Table I) and in Figure 2(right) is −0.55
(second row of Table I). Graphs of F(�), F ′(�) and F ′′(�) for selected values of the parameters
and �=3 are shown in Figure 3. Another example is shown in Figure 4, for which the best value
of h̄ is almost −0.5242 (fifth row of Table I).

The values of F ′′(0) obtained by HAM with minimum residual error of Equations (5) with best
value for h̄ are shown in Table I for �=3. First column shows the value of F ′′(0), which was
obtained before by Anabtawi and Khuri with four terms of Adomian decomposition method [4].

Figure 1. The curves of the F ′′(0) versus h̄ for the 20th-order approximation. Left: a=0,
�=0.5 and right: a=0.05, �=0.25.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:698–708
DOI: 10.1002/fld



GENERALIZED FALKNER–SKAN FLOW 705

Figure 2. Residual error of (5) versus h̄ for the 20th-order approximation. Left: a=0,
�=0.5 and right: a=0.05, �=0.25.

Table I. Results for 20th-order of homotopy analysis method for �=3.

ADM Asaithambi Shooting Crocco’s
a � [4] method [18] method [17] Trans. HAM h̄

0 0.5 0.955076 0.92768 0.92772 0.89503 0.928403 −0.475
0.05 0.25 0.849058 0.796295 0.7963 0.74422 0.796528 −0.55
0.02 0.5 0.857887 0.97637 0.976375 0.9395875 0.976905 −0.476
0.01 0.5 0.798723 0.939715 0.93972 0.90602 0.940406 −0.4723
−0.5 0.25 0.354134 0.269049 0.274784 0.306938 0.294572 −0.51
−0.25 0.5 0.491415 0.460428 0.461925 0.478145 0.485848 −0.415
−0.15 0.25 0.380547 0.409882 0.410658 0.420888 0.415261 −0.5242

Third column shows the same values that were obtained by the shooting method described in [17]
and the fourth column gives the values calculated by Crocco’s transformation. The second column
gives these values by the numerical method employed in [18] for the Falkner–Skan equation. In
this method, we obtain F ′′(0) by solving

dF

d�
=�∞U

dU

d�
=�∞V

dV

d�
=−�∞[F V +�(1−U 2)]

subject to

F(0)=a, U (0)=0, V (0)=�
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Figure 3. Plot of F(�), F ′(�) and F ′′(�) for the 20th-order approximation. Left: a=0, �=0.5,
h̄=−0.475 and right: a=0.05, �=0.25, h̄=−0.55.

Figure 4. Results for a=−0.15, �=0.25 and �=3 in the 20th-order approximation. Left: the h̄-curves
of the F ′′(0) and right: residual error of (5).

with the Runge–Kutta method. Note that � and �∞ are obtained by using the boundary conditions

U (1)=1

V (1)=0

with nested secant iterative method. In this method, the last boundary condition is obtained by
using the asymptotic condition F ′′(+∞)=0.
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6. CONCLUSIONS

In this study the viscoelastic flow of a FENE-P fluid past a plate is analyzed. The order of the
resulting non-linear differential system is reduced by one after employing Crocco’s transformation.
Also for comparison, the third-order non-linear differential problem is solved by a currently
developed method, namely the HAM. An interesting flow quantity, F ′′(0), i.e. the reduced wall
heat flux for a porous medium or the skin friction of the wall for a stretched wall is computed
numerically and a comparison is shown between the HAM and numerical solutions.

We can obtain the numerical solution of (5) by Adomian decomposition method [4] with HAM
while h̄=−1. Our calculations indicate that the best values for h̄ in all cases are not −1 and this
shows the affectivity of HAM.

ACKNOWLEDGEMENTS

The first author is thankful to the Higher Education Commission (HEC) of Pakistan for the financial
support. The authors would like to thank anonymous referees for valuable suggestions.

REFERENCES

1. Agarwala RP, O’Regan D. Infinite interval problems arising in non-linear mechanics and non-Newtonian fluid
flows. International Journal of Non-linear Mechanics 2003; 38:1369–1376.

2. Olagunju DO. A self-similiar solution for forced convection boundary layer flow of a FENE-P fluid. Applied
Mathematics Letters 2006; 19:432–436.

3. Asaithambi A. Numerical solution of the Falkner–Skan equation using piecewise linear functions. Applied
Mathematics and Computation 2004; 159:267–273.

4. Anabtawi M, Khuri S. On the generalized Falkner–Skan equation governing boundary layer flow of a FENE-P
fluid. Applied Mathematics Letters 2007; 20:1211–1215.

5. Alizadeh E, Farhadi M, Sedighi K, Kebria HRE, Ghafourian A. Solution of the Flakner–Skan equation for wedge
by Adomian decomposition method. Communications in Nonlinear Science and Numerical Simulation 2009;
14:724–733. DOI: 10.1016/j.cnsns.2007.11.002.

6. Liao SJ. Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall, CRC Press:
London, Boca Raton, 2003.

7. Bataineh AS, Noorani MSM, Hashim I. Solutions of time-dependent Emden–Fowler type equations by homotopy
analysis method. Physics Letters A 2007; 371:72–82.

8. Hayat T, Sajid M. On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Physics
Letters A 2007; 361:316–322.

9. Hayat T, Sajid M. Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a
stretching sheet. International Journal of Heat and Mass Transfer 2007; 50:75–84.

10. Hayat T, Sajid M. Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid.
International Journal of Engineering Science 2007; 45:393–401.

11. Abbasbandy S, Zakaria FS. Soliton solutions for the fifth-order KdV equation with the homotopy analysis method.
Nonlinear Dynamics 2008; 51:83–87.

12. Abbasbandy S. Homotopy analysis method for generalized Benjamin–Bona–Mahony equation. Zeitschrift für
Angewandte Mathematik und Physik 2008; 59:51–62.

13. Cheng J, Liao SJ, Mohapatra RN, Vajravelu K. Series solutions of nano boundary layer flows by means of the
homotopy analysis method. Journal of Mathematical Analysis and Applications 2008; 343:233–245.

14. Wang J, Chen JK, Liao SJ. An explicit solution of the large deformation of a cantilever beam under point load
at the free tip. Journal of Computational and Applied Mathematics 2008; 212:320–330.

15. Xu X, Liao SJ. Dual solutions of boundary layer flow over an upstream moving plate. Communications in
Nonlinear Science and Numerical Simulation 2008; 13:350–358.

16. Liao SJ. Notes on the homotopy analysis: some definitions and theorems. Communications in Nonlinear Science
and Numerical Simulation 2009; 14:983–997. DOI: 10.1016/j.cnsns.2008.04.013.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:698–708
DOI: 10.1002/fld



708 S. ABBASBANDY, T. HAYAT AND K. MAQBOOL

17. Na TY. Computational Methods in Engineering Boundary Value Problems. Academic Press: New York, 1979.
18. Asaithambi NS. A numerical method for the solution of the Falkner–Skan equation. Applied Mathematics and

Computation 1997; 81:259–264.
19. Asaithambi A. A second-order finite-difference method for the Falkner–Skan equation. Applied Mathematics and

Computation 2004; 156:779–786.
20. Asaithambi A. Solution of the Falkner–Skan equation by recursive evaluation of Taylor coefficients. Journal of

Computational and Applied Mathematics 2005; 176:203–214.
21. Chiam TC. Hydromagnetic flow over a surface stretching with a power-law velocity. International Journal of

Engineering Science 1995; 33:429–435.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:698–708
DOI: 10.1002/fld


